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How the growth of large-scale magnetic fields depends on microphysical transport has long been a
focus of magnetic dynamo theory, and helical dynamo simulations have shown that the time to reach
saturation in closed systems depends on the magnetic Reynolds number Rm. Because this would be
too long for many high-Rm astrophysical systems, here we tackle the long-standing question of how
much Rm-independent growth occurs earlier. From modest-Rm numerical simulations, we identify
and explain a regime when the large-scale field grows independently of Rm, but to a magnitude that
decreases with Rm. For plausible magnetic spectra however, the same analysis predicts the growth in
this regime to be Rm—independent and provides a substantial lower bound for the field strength as
Rm — co. The results provide renewed optimism for the relevance of closed dynamos and pinpoint
how modest Rm and hyper-diffusive simulations can cause misapprehension of Rm — oo behavior.

Introduction.—The large-scale magnetic fields of many
stars, planets, and galaxies require an in situ dynamo
mechanism of sustenance against macroscopic or micro-
scopic diffusion. Plausible dynamo models involve long-
lived fields produced by collective motions of stochastic
or turbulent eddies [1], often studied in the framework
of mean-field electrodynamics @] In this approach, we
look for solutions of a suitably averaged magnetic field
that obeys the mean-field induction equation

B=V x (UxB+E&)+nV’B, (1)

where B = B + b is the total magnetic field measured
in Alfvén units, = is an average over a scale assumed to
be much larger than the turbulent forcing scale (we use
~ and (-) interchangeably), and 7 is the magnetic diffu-
sivity. We use lower case b to indicate the contribution
to B with zero mean, and use similar constructions for
the magnetic vector potential A and the velocity U. For
statistically homogeneous and isotropic, kinetically heli-
cal turbulence, the turbulent electromotive force (EMF)
£ contains a term aB that is capable of amplifying B
ﬂﬂﬁ] Eventually the increasing Lorentz force back-reacts
on the flow and quenches the dynamo.

A long-debated question is whether the quenching pro-
cess becomes more severe at higher values of the mag-
netic Reynolds number Rm ﬂa—lﬂ] In the “dynami-
cal quenching” (DQ) formalism, gradients of B are re-
quired for it to grow, and the dynamo quenching is
controlled by the conservation of magnetic helicity
]. In this formalism, significant growth of the mean
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magnetic field occurs during an Rm-independent regime,
after which Rm-dependent saturation occurs. In the
nearly saturated stage, the field strength can reach super-
equipartition values, but only on a resistively long time
scale ﬂﬂ, 20, @] Although resistive time scales are ap-
propriate for planets, the very large Rm in most astro-
physical flows render the resistive growth time scale too
long for stellar and galactic contexts. This in turn raises
the important question of how strong the field gets before
Rm dominates the evolution.

A substantial Rm-independent regime has not yet been
concretely identified in previous numerical simulations.
Hence, given the uncertainty of the Rm-dependence in
the kinematic phase and the impractically long time scale
for the fully saturated phase, it is a puzzle how astrophys-
ical flows obtain appreciable field strengths from helical
dynamo actions. Solutions to this problem include hav-
ing helicity fluxes [e.g.,[22-26] and using anisotropic forc-
ing ﬂﬁ] See Ref. ﬂ%] for a comprehensive review, and
also Refs. [29-139) for reviews.

In this Letter, we investigate whether an Rm-
independent regime might exist before the very long re-
sistive phase. To be precise, we study the helical dynamo
in a closed system during three distinct temporal stages:
(i) a fast small-scale dynamo (SSD) that grows on tur-
bulent time scales, (ii) a large-scale dynamo (LSD) that
is O(10) times slower than the SSD, and (iii) a growth
driven by magnetic helicity dissipation that operates on
resistive time scales. At very early times when the mag-
netic energy is negligible to the kinetic energy at all
scales, the SSD and LSD phases can be described in a
unified framework ]. Once the SSD comes to near
saturation, LSD takes over and potentially operates in-
dependent of resistivity for some more extended time,
sometimes termed a quasi-kinematic LSD @, @] The
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res1st1ve hase becomes dominant once the LSD saturates

@ . Hence we ask, does the LSD phase am-
phfy the mean ﬁeld to some Rm-independent value before
dynamical quenching transitions to the resistively lim-
ited asymptotic phase? We define the regime whose Rm
dependence we wish to assess as the “pre-dynamically
quenched” (PDQ) regime, a definition which will be made
more precise later.

An unambiguous answer is challenging to obtain from
numerical simulations without careful interpretation be-
cause of the poorly separated time scales of the LSD and
the resistive phases given the moderate values of Rm
available. Instead of using time to delineate dynamo
phases, here we employ a new dynamo tracker which
records how much the dynamo driver has been quenched.
At each quenching level, we then analyze individually the
Rm-dependence of the LSD growth rate, its time dura-
tion, and the field strength. We then discuss the distinct
implications of our analysis for the modest Rm values
obtainable in the simulations versus the implications for
asymptotically large Rm.

Methods.—We perform compressible magnetohydrody-
namics simulations with an isothermal equation of state
using the PENCIL CODE @, |4_l|] The velocity is driven in
a (2m)3-periodic box using positively helical plane waves
at a fixed forcing wave number ky, but with random
phases and directions at each time step. The vector po-
tential A is solved in the Weyl gauge, but periodic bound-
ary conditions ensure that the magnetic helicity is gauge
invariant. For all runs, we use kf = 4 and Mach num-
bers Ma ~ 0.1. The Reynolds numbers Re = w5 /vks
(with uyms being the root-mean-square velocity and v
being the viscosity) are kept roughly constant, ~ 5, and
the magnetic Prandtl number Pm = v/7 is varied from
1 to 100. This isolates the Rm dependence from the Re
dependence.

We consider only the helical part of the magnetic field
since that is most relevant to LSD dynamics. Although
the current helicity spectrum HC is gauge-independent
regardless of boundary conditions, it is more convenient
here to formulate the equations using the magnetic helic-
ity spectrum HM. For the present boundary conditions,
the two are simply related by HC = k2HM where k is the
wave number. Throughout this work, energy and helicity
spectra are normalized such that the integration over all
the wave numbers yields the energy or helicity density.
We then decompose the large- and small-scale magnetic
helicity densities as

/HZM dk = sikgl/k [ 1M dk, (2)

where ¢ = 1,2 denote the large-scale (kK < kf) and
the small-scale (k > kf) modes, respectively, s; =
JHM dk/ [ ’H?A‘ dk is the mean handedness, and k; =
[k "HM dk/ [ "HM dk is the mean wave number. Note
that —1 < s; < 1 and k; > 0. The non-dimensional
energy density of the large-scale helical field is Fp, =
[ k|HA dk/u2,, where ums is the instantaneous root-

mean-square (rms) value of the turbulent velocity. We
define dimensionless time as #(t) = fot Upms () ke dt,
which is monotonic in ¢, and reduces to ¢ = tuymsks for
constant uyms. Hence ¢ roughly equals the number of
turnovers of the largest eddies. We also define the di-
mensionless exponential growth rate 7 = dln £y, /dt.
Quenching mechanism.—We first demonstrate that
DQ is the dominant quenching mechanism. For statis-
tically isotropic and homogeneous turbulence, the turbu-
lent EMF in Eq. (@) takes the form £ = aB — 8V x B.
We write turbulent transport coefficients in general forms

= f(EL, Rm)ao + Oém(EL, Rm) (3)
and

B = f(Ev,Rm)Ao, (4)

where the subscript 0 denotes the kinematic values, so aq
is the kinetic contribution to « in the kinematic phase.
We distinguish the magnetic feedback onto the velocity
field itself, f, from that due to the helicity conservation
constraint, ay,. The factor f captures the possible sup-
pression of «p and turbulent diffusion 5y, as considered
by Refs. [0-9], whereas ay, grows by DQ [14, [17,[17] and
is related to the small-scale current helicity.

Without loss of generality, we consider the velocity
field to be driven with positive kinetic helicity. In their
isotropic forms M, 14, l,

1 1 1/2
a0:—§<Tuu VXUO —§</—dk) (5)

and

. ) 1/2
am_§<Tbb~be>2§(/k2Hg/Idk) ) (6)

where H¥ is the kinetic helicity spectrum, and 7, and
Tp are correlation times which are not necessarily equal.
Similarly, Sy = (Tﬁurmb) /3, and 753 = 1/upmskr. We
denote € = 7, /73 which is of order unity.

For a helical LSD without shear (i.e., an o dynamo),
the energy growth rate of a mode with wave number &y
is yLsp = 2|alk — 2(8 + n)ki. Using Egs. @) and (@),
the normalized growth rate is

2urms 0 kl

=fe : (1_X)k_f

3urms
2urms 0 2 kl g

— ’ — ) [ = 7

<f 3Urms +Rm> <kf) (D
where x = —am/fap is the DQ factor, Rm = uyms/nks
is the instantaneous magnetic Reynolds number, and we
have considered a fully helical velocity field. To reveal the
Rm dependence of f, we take ¢ = 1 for the moment, as
it does not change significantly with Rm in simulations.

The f factor can then be calculated from Eq. (), since all
other quantities are measurable. The result is shown in

YLSD
urmskf

YLSD =




Fig.@(a), and we see that f only weakly changes with Ef,
and Rm. Since both Ey, and <b2> are nearly monotonic in
time, this also implies that f is not strongly quenched by
the small-scale field in three-dimensional systems. DQ is
thus the dominant source of quenching and we can use x
to distinguish different dynamo phases.

As per Eq. @), we absorb f into ax = fap, and there-
fore x = —aun/ax. Hence o = ay (1 — x), and

2k 2 2\ (k)
ALSD 263—];(1—@— <§+%) (k_1> )
Note that x is roughly the normalized current helicity
which manifests the Lorentz back-reaction of the LSD.
The LSD initially operates kinematically when y < 1,
but is then dynamically quenched by x due to the grow-
ing small-scale current helicity. The maximal value x
can obtain is analytically determined by A1.sp = 0 to be
roughly 1—kq /k¢ E], which is < 3/4 in our cases. Resis-
tive diffusion of magnetic helicity reduces the growth rate
of x, but does not directly show up in the LSD growth
rate. We discuss its influence on LSD quenching later.
As x grows from nearly 0 to ~ 3/4, the value y ~ 0.1
separates the SSD and LSD-dominated phases, as deter-
mined by two measurements: (i) The mean-to-rms ratio,
B’/B2, ., remains constant at x < 0.1 for all runs, which
is a signature SSD feature. (ii) The SSD phase efficiently
amplifies small-scale fields but with low fractional mag-
netic helicity, e.g. an average value of 0.05 for run A5.
Thus values of x > 0.1 result from the LSD. The LSD
regime for which 0.1 < x < 0.6 quantitatively demarks
the PDQ regime whose Rm dependence we will assess.
In our simulations, y is nearly monotonic in time with
some fluctuations. In what follows, any quantity taken
at x = X’ is meant to be its average over the interval
X € X —d,x + 6] with 6 = min{0.2x’,0.05}, unless
otherwise specified.
Rm-dependence of LSD.—We first compare Eq. (&)
with numerical results. We rearrange this equation to

3k 3\ ki
a_2k17+<1+Rm) T 9)

where o = €(1 — x), and for some given y, we expect o
to depend on Rm at most weakly through e. Fig. [[i(b)
shows our simulation values of ¢ as a function of y, with
varying Rm for different curves. The observation that
o becomes Rm-independent once Rm 2> 130, together
with Eq. (@) and the fact that k; is bounded from be-
low, implies that 7 is independent of Rm as Rm — oo.
An Rm-independent growth rate was previously reported
ﬂﬂ] at Rm 2 500, but here we provide evidence at lower
Rm.

Overall, the measured values of o are lower than (1 —
X), and € = 0.8 is sufficient to explain the deviation, as
indicated by the two black dashed lines in Fig.[[b). This
time scale difference in the oy and g coeflicients might
explain the lower-than-unity LSD efficiency previously
reported by Ref. [37].

3

We next examine the normalized duration AZ(x;, xz)
that the LSD spends in the interval x; < x < x¢. This
is plotted in Fig. Bl for a number of pairs of (i, x¢). The
results show no significant scaling with Rm. Hence, the
e-folding of the LSD for a given range of y, namely the
product of the normalized LSD growth rate and growth
duration, is asymptotically independent of Rm.

However, the non-dimensional large-scale helical
field energy density, Fr(x,Rm), does decrease with
increasing Rm at fixed x, although the ratio
Er(xs, Rm)/Er(xi, Rm) is weakly sensitive to Rm. To
see how EL(X; Rm) depends on Rm, we define a scaling
exponent p by fitting a power-law relation Ep(y, Rm) o
Rm”™ | as shown in Fig. We see that p is consis-
tently negative for all y, indicating that at all stages of
the LSD, the mean-field energy decreases with increasing
Rm. We next explain this dependence for the simulations
and discuss what happens at asymptotically much larger
Rm, and the modest Rm simulation may disguise an Rm-
independence as Rm — co. B

Understanding the relation between E and Rm—The
large-scale field strength decreases with increasing Rm
at a fixed y, but for different reasons in the SSD and
LSD phases. In the SSD phase at x ~ 0.01, the negative
scaling EL o Rm™%? for our Pm > 1 cases is similar to
the result of Refs. [35, [42] that B/Byms o« Rm /% for
Pm = 0.1 cases. In fact, we find that the ratio B/Bms
is a constant at y < 0.1 for each run (roughly 300 eddy

turnover times), but is o Rm~ 2. That B and Byms
grow at the same rate is a signature of the SSD phase (or,
in the language of Ref. [3], a feature of the kinematic,
not quasi-kinematic, dynamo phase), although the origin
of —1/2 is not yet fully understood [42].

In the LSD phase for y > 0.1, Ej, can be inferred
from the total magnetic helicity without integrating the
growth equation. Consider the case where the volume-
averaged magnetic helicity is zero initially, but later gains
AH = HM + HM due to resistive diffusion, where H,
are the average magnetic helicity of the large- and small-
scale fields, respectively. Using Eq. (@) we have HM =
slkflELufms, and

~ ki HYY ki AH
EL(XaRm):__l—2+ - .

S1 u?ms S1 u?ms

(10)

We denote the two terms on the right of Eq. (IQ) by T}
and T5, so that EL = T1+7T5. Note that T5 is from the re-
sistive loss of magnetic helicity but 77 is purely dynamic,
so that the magnitude of their ratio determines whether
resistive effects dominate and this is to be assessed below.

For all runs at all times, the magnetic fields near the
resistive wave number have positive magnetic helicity,
whilst those at the lowest wave numbers have negative
helicity. Hence AH < 0 and s; < 0 always. However, as
we will see shortly, H)' may have the same sign as s; at
early times, so then 77 can be negative.

The evolution of T 2/ Fy, is shown in Fig. @ For the

three runs with the highest Rm, we see Ty / EL < 0 and
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FIG. 1. The Rm dependence of the runs. (a) The quenching factor f versus the dimensionless large-scale helical magnetic
energy Er. (b) The measured values of o [Eq. [@)], as a function of x with different Rm. The two black dashed lines indicate
the theoretical values €(1 — x) with ¢ = 1 (upper) and € = 0.8 (lower).
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FIG. 3. The power index p in EL(X) o Rm? for each x, by
fitting all the runs in group A.

Tg/EL > 1 during the SSD phase. That T} < 0 and
51 < 0 implies a negative average handedness of the
small-scale field, s; < 0 [see Eq. [@)]. This is because
at that time, negative helicity resides on a wide range of
k, particularly at both k& < k¢ and a finite range at k > k.
This implies that, since the field at k; is already fully he-
lical, k1A H/s; alone would overestimate the large-scale
contribution, i.e., TQ/EL > 1.

In fact, the initial dividing wave number kqg;, between
the positively and negatively helical parts is not k¢, but
roughly the viscous wave number k,. The SSD initially
operates most efficiently on the viscous scale, and gen-
erates positively helical fields at k > k,. Conservation
of magnetic helicity requires that negatively signed mag-
netic helicity must compensate at k < k, at a generation
rate comparable to that of the efficient SSD at k,. Thus,
the net sign of helicity at k < k, is initially negative. As
the SSD at k, approaches saturation, its back-reaction
that produces negative helicity on larger scales eventu-
ally becomes slower than the SSD rate below k,, and so
positive helicity starts to build up there and we see kqiv
decreasing, until eventually it reaches kq;v = k¢. Hence,
s2 < 0 during the kinematic SSD phase but becomes pos-
itive when the SSD saturates. For this reason, at early
times, Eq. (I0) can be interpreted as conservation of mag-
netic helicity during SSD, before the LSD is influential.

The LSD starts to dominate the field growth at k;
at y 2 0.1, and its back-reaction on the small scales
grows T7. Note that in the LSD-dominated regime, s;
has the same sign as AH and the opposite sign to H),
so that T 2 > 0 always. By the time y = 0.6 which is
close to the end of the LSD regime, Eq. (I0) determines
how much the LSD has benefitted from resistive contri-
butions. That 77 < T, implies that the LSD quenching
is still weakened substantially by the resistive dissipation
of small-scale current helicity, and therefore the PDQ
regime depends strongly on Rm. This is why p < 0 at
x > 0.1 [Fig. B]. Note that the resistive term does not
amplify the large-scale field directly, but slows the growth
of x, thereby weakening the back-reaction and allowing



more large-scale growth of Ef, (x)-

Implications for higher Rm.—From Fig. @ we see that
by x = 0.6, the contribution from 77 increases and that
from 7% decreases with increasing Rm. However, for
the highest Rm runs A5 and A6, the ratio 7%/7) has
reached saturation and no longer decreases with increas-
ing Rm. This could be because the LSD has not fully
saturated at x ~ 0.6, or because T»/T} is not monotonic
in Rm. Regardless, it is interesting to assess whether T3
might dominate before the resistive phase in the large
Rm regime, and/or become independent of Rm. Since
T> < AH and becomes negligibly small during the LSD
phase in the Rm — oo limit, the necessary condition for
Rm-independent PDQ regime is that d|T}|/dRm — 0 as
Rm — oco. In the LSD phase, H}! is of one sign, so we
can write Ty = —sak1x?/s1ke. Since |s1 2| >~ 1, and k; is
bounded from below, Rm-independent PDQ regime re-
quires ko to depend at most weakly on Rm at fixed x;,
which will be fully determined by the helicity spectrum.

Consider a power-law magnetic helicity spectrum,
HM(k) < k79, in the inertial range. This is appropri-
ate for Pm < 1 flows. Using Eq. @) for k2, we then have
that ke/ko = F(q)/F(q — 1), where F(q) = [{ 77 du,
r = kais/ks, and kqis is the dissipation wave number of
the helical fields that might be different from the resis-
tive scale. In any case, r > 1 when Rm — oco. In that
Rm — oo limit,

q—2
R >27
q—1 i
! =2
Inr’ =4
kf 2—q 1
s - 1<qg<2,}.
l<:2_> qg—1r2-a ¢ (11)
|
= q=1,
r
2—ql
—q_7 q<1
1—gqr

Hence Rm-independent PD(Q regime happens if ¢ > 2,
i.e., the magnetic helicity spectrum is sufficiently steep.

For Pm > 1 flows whose magnetic energy and helic-
ity spectra may have broken power laws at k > k¢, the
conditions for an Rm-independent PDQ regime become
(i) a ¢ > 2 range exists, and (ii) the wave number above
which g > 2 does not increase with increasing Rm. From
our Pm > 1 simulations, we observe spectral slopes ¢ < 2
at kr < k < 2kf and ¢ > 2 at k > 2k¢ for runs A5 and
A6 at x = 0.6. Hence the PDQ regime would be Rm-
independent as Rm — oo if the wave number at which
q — 2 changes sign (~ 2k here) is Rm-independent, as
seen for runs A5 and A6 (Rm ~ 250 and 500). This is
consistent with previous indications that the peak wave
number of the magnetic energy spectrum for large-Pm
SSDs remains Rm-independent for large Rm from both
theory [33] and simulation [43].

The spectrum may also evolve from shallower than
the aforementioned threshold at early times to steeper
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FIG. 4. Tl/EL in solid and TQ/EL in dashed curves.

at later times. Then the influence of Rm on the satu-
rated state could still be small, as is crudely suggested in
a four-scale approach HE] Future high-resolution sim-
ulations for both Pm > 1 and Pm < 1 are needed to
concretely confirm the spectral slope of the magnetic he-
licity at large Rm and its temporal evolution.

To summarize, for a magnetic helicity spectrum
that satisfies the conditions mentioned above, the Rm-
independent value that Fp, can obtain at any x is

s2 b q=2 ,
S1 kpcak q— 1 ,
(12)
where kpear is the Rm-independent peak of the magnetic
helicity spectrum. Eq. [I2) is the lower bound for any
case with a finite Rm (for which T» > 0), and indeed for
all of our simulation runs, we observe Er,/(x2ki/ks) is
> 2.5, again highlighting the dominance of the resistive
contribution for these runs.

Conclusions.—Focusing on the previously sparsely
studied, but important, regime of LSD growth after
the SSD saturates but before the LSD does, we arrive
at three distinct results: (i) For isotropically helically
forced flows, our simulations and theoretical analyses re-
veal that the large-scale field growth rate becomes Rm-
independent at modest Rm and agrees well with the DQ
formalism. Namely, the kinetic part to a remains Rm-
independent during the course of the simulation and the
Lorentz-force back-reaction that ends the LSD regime ex-
erts itself not by suppressing ay but by growth of ayy,.
(ii) In contrast, the large-scale field strength attained in
this PDQ regime for Rm values accessible in simulations
is Rm-dependent, being dominated by the resistive loss
of magnetic helicity even for Rm ~ 500. (iii) However,
the same theoretical analysis of the LSD shows that the
Rm — oo dependence of this PDQ regime depends on the
evolution of the current helicity spectrum, or equivalently
the magnetic helicity spectrum given the present bound-
ary conditions. For sufficiently steep magnetic helicity
spectra, the analysis shows that the regime becomes Rm-
independent at asymptotically large Rm, with the large-
scale magnetic energy lower bound given by Eq. ([I2]).

Taken at face value, these results imply that when

lim FEp(x,Rm)= lim T} =—

Rm—o0 Rm—o0



the current helicity spectrum falls off more steeply than
kY, high-Rm flows in stars and galaxies that involve an
a? or a2-Q effect could be capable of efficient LSD field
growth even without boundary helicity fluxes, although
systems requiring fast cycle periods would favor helic-
ity flux driven dynamos. For shallower spectra, helicity
fluxes or some non-helically driven LSD [e.g.[44] would be
necessary even to explain the observed field strengths, let
alone fast cycle periods. For planetary dynamos whose
resistive time scales can be comparable to LSD dynam-
ical time scales, o quenching is significantly weakened
by resistive diffusion and therefore the LSD is much less
constrained by the slope of the current helicity spectrum.

Finally, hyper-diffusivity is sometimes used for mim-
icking high-Rm flows @] Because the dissipation rate
depends strongly on wave number, magnetic energy piles
up near the resistive scale (bottleneck effect) [45]. If
these resistive scale fields are helical, ko becomes large
and our analysis shows that the quasi-kinematic LSD
phase is strongly quenched even though it eventually

leads to super-equipartition magnetic energies. Hence,
helical LSDs with hyper-diffusion are actually less effec-
tive for inferring realistic asymptotic behaviors of LSDs.
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